
Smart Contract Code

Review And Security

Analysis Report

Customer:

Societe Generale Forge (SG Forge)

Date: 12/06/2025

We express our gratitude to the Societe Generale Forge (SG Forge) team for the collaborative

engagement that enabled the execution of this Smart Contract Security Assessment.

Platform: EVM

Language: Solidity

Tags: ERC20

Changelog: 06/06/2024 (2nd Review); 12/06/2025 (3rd Review)

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository Shared privately

Commit 1c3697243fa64e2d3b01ef516be53063bc1a7d10

2

https://hackenio.cc/sc_methodology

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

2 0 1 1
Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 0

Medium 1

Low 1

Vulnerability Severity

F-2024-3285 - Use of constructor in upgradeable contract Medium

F-2024-3306 - Asset wiping in wipeFrozenAddress function Low

3

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/a6305e16-e714-4005-a3c6-34009426ca5c
https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/0962b507-5de1-4c09-ae1e-8e65f68c37d4

This report may contain confidential information about IT systems and the intellectual

property of the Customer, as well as information about potential vulnerabilities and methods

of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent

publication of this report shall be without mandatory consent.

Document

Name

Smart Contract Code Review and Security Analysis Report for Societe

Generale Forge (SG Forge)

Audited By Carlo Parisi

Approved

By

Przemyslaw Swiatowiec

Website https://www.sgforge.com/product/coinvertible/

Changelog 24/05/2024 - Preliminary Report

06/06/2024 - 2nd Review Report

12/06/2025 - 3rd Review Report (Done By Oleksii Haponiuk)

4

https://www.sgforge.com/product/coinvertible/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 13

Disclaimers 17

Appendix 1. Severity Definitions 18

Appendix 2. Scope 19

System Overview

SMART_COIN is an ERC20, with the following contracts:

SmartCoin — ERC20 extended with:

UUPS upgrade mechanism

Operator Roles: registrar, operations, technical. These roles are introduced to manage

the upgrade to new implementations and control transfers of tokens amongst these

roles.

EncodingUtils - a library that has the functionality to compute the hash of transfer

requests

AccessControlUpgradeable - an abstract contract that handles the access control for the

SmartCoin contract.

Privileged roles

Registrar operator:

Manages Whitelist of authorized users.

Validates/Rejects transfers to registrar and operations operators.

Names the operators for the new implementation.

Authorizes the upgrade to the next implementation.

Cannot be used as spender or destination of transferFrom().

Can retrieve tokens from any address to itself.

Can mint and burn SmartCoin tokens.

Operations operator:

Cannot be used as spender or destination of transferFrom().

Transfers to operations must be validated by the registrar.

Technical operator:

Launches a previously authorized (by registrar) implementation upgrade.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Documentation quality

Functional requirements are mostly provided.

Technical description is not provided.

NatSpec is sufficient.

Code quality

Gas consumption could be optimized.

Test coverage

Code coverage of the project is 95.45% (branch coverage).

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 1 medium, and 1 low severity

issues.

All identified issues are detailed in the “Findings” section of this report.

7

Risks

SmartCoin is an ERC20 token that has centralized features, the tokens can be frozen or

burned by the admins of the protocol.

This audit covers the SmartCoin.sol contract, which is designed to be upgradeable.

However, the audit does not cover the reliability of the first version (v1) of the contract,

future versions, or potential mistakes that could be made by the admin during the

upgrade process. This limitation could leave potential vulnerabilities undetected in the

contract's lifecycle.

8

Findings

Vulnerability Details

F-2024-3285 - Use of constructor in upgradeable contract -

Medium

Description: The AccessControlUpgradeable.sol contract uses a constructor to

initialize the registrar , operations , and technical addresses.

However, in the context of upgradeable contracts in Solidity,

constructors should not be used. This is because the

constructor code is only run when the contract is first created

and will not be included in the deployed bytecode. As a result,

when the contract is upgraded, the constructor will not be run

again, and the state variables will not be re-initialized.

Additionally, constructors in upgradeable contracts should call

_disableInitializers() to prevent the initializer from being called

more than once.

Assets:

smartCoin/AccessControlUpgradeable.sol [N/A]

Status: Mitigated

Classification

Impact: 5/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Likelihood [1-5]: 2

Impact [1-5]: 5

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 3.5 (Medium)

Hacken Calculator Version: 0.6

9

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/a6305e16-e714-4005-a3c6-34009426ca5c

Severity: Medium

Recommendations

Remediation: To resolve this issue, consider using an initializer function

instead of a constructor. The initializer function can be run

manually after the contract is deployed to set the initial state.

Also, ensure that the registrar , operations , and technical

variables are not declared as immutable since immutable variables

can only be set in the constructor and cannot be changed

later, which is not suitable for upgradeable contracts.

Resolution: The client has mitigated the inherent risk of sharing the same

immutable value throughout all proxies that share that

implementation contract. Team declared that this behaviour

would not affect their contract upgrade processes.

10

F-2024-3306 - Asset wiping in wipeFrozenAddress function -

Low

Description: The wipeFrozenAddress function in the SmartCoin.sol contract

transfers the balance of a frozen address to the registrar and

then burns the transferred amount. However, if there is a

transaction pending approval or rejection when an address

gets frozen, and the wipeFrozenAddress function is called, the

assets involved in the pending transaction will not be wiped.

This is because the wipeFrozenAddress function only considers the

current balance of the frozen address, not the assets in

pending transactions. This could result in the frozen address

retaining assets if the pending transaction is rejected after the

address has been wiped.

Assets:

smartCoin/SmartCoin.sol [N/A]

Status: Accepted

Classification

Impact: 2/5

Likelihood: 3/5

Exploitability: Dependent

Complexity: Simple

Likelihood [1-5]: 2

Impact [1-5]: 3

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

Severity: Low

Recommendations

Remediation: To ensure all assets are wiped from a frozen address, the

registrar should first reject any pending transactions from the

11

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/0962b507-5de1-4c09-ae1e-8e65f68c37d4

frozen address before calling the wipeFrozenAddress function.

Alternatively, the wipeFrozenAddress function could be modified to

automatically reject any pending transactions from the frozen

address.

12

Observation Details

F-2024-3283 - Unnecessary gas consumption in

wipeFrozenAddress function - Info

Description: The wipeFrozenAddress function in the SmartCoin.sol contract

transfers the balance of a frozen address to the registrar, and

then burns the transferred amount. This two-step process of

transferring and then burning tokens results in unnecessary

gas consumption, as each operation requires its own

transaction and gas fees.

Assets:

smartCoin/SmartCoin.sol [N/A]

Status: Fixed

Recommendations

Remediation: To optimize gas usage, consider implementing a direct burn

function that can burn tokens from the frozen address in a

single operation. This would eliminate the need for the

intermediary transfer to the registrar, thereby reducing the

overall gas cost.

13

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/da1de546-ca97-43ee-a6e9-3d1b1e518f93

F-2024-3284 - Redundant gas consumption in

decreaseAllowance function - Info

Description: The decreaseAllowance function in the SmartCoin.sol contract

includes the forbiddenForRegistrar and forbiddenForOperations

modifiers. These modifiers check whether the _spender is the

registrar or an operator. However, since the allowance cannot

be approved or increased for the registrar and the operator,

these checks are unnecessary and result in a waste of gas.

Assets:

smartCoin/SmartCoin.sol [N/A]

Status: Fixed

Recommendations

Remediation: To optimize gas usage, consider removing the

forbiddenForRegistrar and forbiddenForOperations modifiers from the

decreaseAllowance function.

14

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/8be401ed-2266-4982-83b4-47e32308d9fc

F-2024-3304 - Redundant gas consumption in pause and

unpause functions - Info

Description: The pause and unpause functions in the AccessControlUpgradeable.sol

contract include the onlyWhenNotPaused and onlyWhenPaused modifiers

respectively. These modifiers check the current state of the

contract before allowing the functions to proceed. However,

since these functions are only callable by the registrar who

should be aware of the contract's state, these checks are

unnecessary and result in a waste of gas.

Assets:

smartCoin/AccessControlUpgradeable.sol [N/A]

Status: Accepted

Recommendations

Remediation: To optimize gas usage, consider removing the onlyWhenNotPaused

and onlyWhenPaused modifiers from the pause and unpause functions

respectively.

15

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/ee373384-638f-4fa0-98bc-76d674030f36

F-2024-3305 - Incorrect comment in ISmartCoin.sol - Info

Description: The comment above the ISmartCoin.sol interface states that all

transfers need to be validated by an operator (the registrar

operator) before the tokens are actually transferred. However,

this is not accurate. Only transfers to the operator or registrar

need to be validated, not normal transfers.

/**

* @dev This interface is a slightly modified version of the IERC20 standa

* To comply with the financial regulations(KYC, AML, Sanctions&Embargos),

* before the tokens are actually transferred

*/

Assets:

smartCoin/ISmartCoin.sol [N/A]

Status: Fixed

Recommendations

Remediation: To avoid confusion and potential misuse of the interface, the

comment should be corrected to accurately reflect the

functionality of the contract.

16

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/02c663d0-4581-49cc-9d76-946db953de8d

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

17

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution, do not affect security score but

can affect code quality score.

18

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository Shared privately

Commit 1c3697243fa64e2d3b01ef516be53063bc1a7d10

Whitepaper -

Requirements -

Technical Requirements -

Contracts in Scope

libraries/EncodingUtils.sol

smartCoin/ISmartCoin.sol

smartCoin/IAccessControl.sol

smartCoin/SmartCoinDataLayout.sol

smartCoin/SmartCoin.sol

smartCoin/AccessControlUpgradeable.sol

smartCoin/AccessControlDataLayout.sol

19

