
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: SG Forge
Date: 16 Oct, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for SG Forge

Approved By
Viktor Lavrenenko | SC Auditor at Hacken OÜ
David Camps Novi | SC Audits Lead at Hacken OÜ
Grzegorz Trawiński | SC Audits Approver at Hacken OÜ

Tags ERC20 token; StableCoin;

Platform EVM

Language Solidity

Methodology Link

Website SG FORGE | Bridging the gap between Capital Markets and Digital Assets

Changelog 03.10.2023 – Initial Review
16.10.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.sgforge.com/

Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10

H01. Highly Permissive Role Allows Access To Users Funds 10
Medium 11
Low 11

L01. Missing Zero Address Validation 11
L02. Multiple Roles Can Be Set For A Single Address 11

Informational 11
I01. Style Guide Violation: Order Of Layout 11
I02. Variable Shadowing as Improper Coding Standard 12
I03. Missing SPDX License Identifier 13
I04. Missing Initialization Calls To Parent Contracts 13
I05. State Variables In Upgradeable Contracts Should Be In Initializer 14
I06. EngagedAmount Collection Processing Lacks Consistency 14

Disclaimers 18
Appendix 1. Severity Definitions 19

Risk Levels 19
Impact Levels 20
Likelihood Levels 20
Informational 20

Appendix 2. Scope 21

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by SG Forge (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

SMART_COIN is an ERC20 stablecoin pegged to the Euro, with the following
contracts:

● SmartCoin — ERC20 extended with:
- UUPS upgrade mechanism
○ Operator Roles: registrar, operations, technical. These roles

are introduced to manage the upgrade to new implementations and
control transfers of tokens amongst these roles.

● WhitelistUpgradeable — the contract, which:
- Manages the 3 roles: sets and holds their addresses, includes

roles’ modifiers.
- Manages the whitelist: adds/removes addresses, and includes

whitelist modifiers.
- Manages new implementations: authorizes implementation, names

new implementation operators, and allows operators to accept
the new roles.

● WhitelistDataLayout - the contract contains the storage part of the
WhitelistUpgradeable contract, and stores the data of the new
implementation contract: its address and the addresses of new roles.
Furthermore, it stores the whitelisted users.

● SmartCoinDataLayout - the contract, which contains the storage part
of the SmartCoin contract.

● EncodingUtils - a library that has the functionality to compute the
hash of transfer requests

Privileged roles
● Registrar operator:

○ Manages Whitelist of authorized users.
○ Validates/Rejects transfers to registrar and operations

operators.
○ Names the operators for the new implementation.
○ Authorizes the upgrade to the next implementation.
○ Cannot be used as spender or destination of transferFrom().
○ Can retrieve tokens from any address to itself.
○ Can mint and burn SmartCoin tokens.

● Operations operator:

www.hacken.io
4

○ Used when token owners want to sell the SmartCoin tokens to the
issuer in exchange for cash

○ Cannot be used as spender or destination of transferFrom().
○ Transfers to operations must be validated by the registrar.

● Technical operator:
○ Launches a previously authorized (by registrar) implementation

upgrade.

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided:

○ Technical specification is provided.
○ NatSpec is sufficient.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Deployment instructions are provided.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is covered.
● Interactions by several users are tested thoroughly.

Security score
As a result of the audit, the code contains 1 high issue. The security
score is 5 out of 10.

All found issues are displayed in the “Findings” section.

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Summary
According to the assessment, the Customer's smart contract has the
following score: 6.5. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

3 Oct 2023 2 0 1 0

13 Oct 2023 0 0 1 0

Risks

● The SmartCoin contract is upgradeable, which means that the contract
logic can be changed by the protocol owners at any time. The users
should be aware of this fact when interacting with Upgradeable
Contracts.

● The protocol uses a whitelisting method in order to control the users
who can transfer the SmartCoin tokens. This means that users’ tokens
can become locked in their wallets if they are removed from the
whitelist while holding tokens.

● The stablecoin supply is managed as explained in section 4 of the
WhitePaper, although being a centralized protocol the users must
trust the owners to keep manage peg EUR-EURCV and manage the
collateral correctly.

www.hacken.io
6

https://www.sgforge.com/wp-content/uploads/2023/07/SGF_Coinvertible_White-Paper-v1.0.pdf

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Not

Relevant

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Failed H01

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Failed H01

Data
Consistency

Smart contract data should be
consistent all over the data flow.

Not
Relevant

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9

Findings

Critical

No critical severity issues were found.

High

H01. Highly Permissive Role Allows Access To Users Funds

Impact High

Likelihood Medium

The Registrar role possesses extensive control over users' funds. By
using the recall() function, the registrar can retrieve tokens from
SmartCoin holders.

/**

* @dev Recalls a `amount` amount of tokens from `from` address

* The tokens are transferred back to the registrar operator

*

* NB: This method is reserved to the registrar operator.

*/

function recall(address _from, uint256 _amount)

external

override

onlyRegistrar

onlyWhenBalanceAvailable(_from, _amount)

returns (bool)

{

super._transfer(_from, registrar, _amount);

return true;

}

Roles should never be able to access users’ funds without their
permission. Additionally, overextended permissions can lead to
substantial security risks, especially in the event of a key leak.
Such a leak could precipitate dire consequences, potentially
resulting in security breaches that undermine the integrity and
trustworthiness of the entire system.

Path: ./contracts/smartCoin/SmartCoin.sol: recall()

Recommendation: The team should reconsider the protocol's design. It
is recommended to delete the recall() functionality or add the extra
allowance mechanism, which would allow users to give the necessary
permission to the registrar. The registrar role should be managed via
a multi-signature wallet.

Found in: f34ba59

Status: Acknowledged (Revised commit: dab4c9e)
www.hacken.io

10

Resolution: The SG Forge team decided not to follow the
recommendations given the following explanation:

“The recall() function is a mandatory feature requested by the
Compliance team and the internal policy of Societe Generale.
Nonetheless, this recall feature is documented in the Terms &
Conditions attached and provided to our investors. This feature could
legally be triggered for special events as mentioned in paragraph 8.2
of the T&C (“Conversion following a Special Event”).”

Additional information can be found in the project Terms and
Conditions document.

Medium

No medium severity issues were found.

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Low

Additional checks against the 0x0 address should be included in the
reported functions to avoid unexpected results.

Path: ./contracts/smartCoin/SmartCoin.sol: constructor()

Recommendation: It is recommended to add zero address checks.

Found in: f34ba59

Status: Fixed (Revised commit: dab4c9e)

Resolution: onlyNotZeroAddress() modifier has been created to protect
the constructor() from 0x0 addresses.

L02. Multiple Roles Can Be Set For A Single Address

Impact Low

Likelihood Low

Missing address equality check in the nameNewOperators() function
allows the registrar role to pass the same address for all system
roles, which will create a negative impact on the system security and
make it vulnerable to attacks.

Path:

./contracts/smartCoin/SmartCoin.sol: nameNewOperators()

www.hacken.io
11

Recommendation: It is recommended to enhance the system’s security by
implementing the check to ensure that the passed addresses for
operations and technical roles are different from each other and from
the registrar.

Found in: f34ba59

Status: Fixed (Revised commit: dab4c9e)

Resolution: OnlyWhenOperatorsHaveDifferentAddress modifier has been
added to allow only different addresses for the registrar, operations
and technical roles.

Informational

I01. Style Guide Violation: Order Of Layout

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

Paths:
./contracts/smartCoin/SmartCoin.sol
./contracts/smartCoin/WhitelistUpgradeable.sol

Recommendation: It is recommended to change the order of layout to
fit the Official Style Guide.

www.hacken.io
12

https://docs.soliditylang.org/en/v0.8.20/style-guide.html#order-of-layout

References: Solidity Style Guide

Found in: f34ba59

Status: Fixed (Revised commit: dab4c9e)

Resolution : The layout order has been updated to comply with the
Solidity Style Guide.

I02. Variable Shadowing as Improper Coding Standard

The variable names registrar, operations, and technical in the
SmartCoin constructor overshadow variables of the same name within
the contract scope when inheriting from WhitelistUpgradeable.

● SmartCoin

constructor(address registrar, address operations, address technical)

WhitelistUpgradeable(registrar, operations, technical) {

_disableInitializers();

}

● WhitelistUpgradeable

address public immutable registrar;

address public immutable operations;

address public immutable technical;

constructor(address _registrar, address _operations, address _technical) {

registrar = _registrar;

operations = _operations;

technical = _technical;

}

Such a situation can lead to confusion and unintended consequences
during code execution.

Path: ./contracts/smartCoin/SmartCoin.sol: constructor().

Recommendation: It is recommended to rename the constructor arguments
registrar, operations, and technical as _registrar, _operations, and
_technical.

References: SWC-119

Found in: f34ba59

Status: Fixed (Revised commit: dab4c9e)

Resolution: The constructor arguments were updated to _registrar,
_operations, and _technical.

www.hacken.io
13

https://docs.soliditylang.org/en/v0.8.20/style-guide.html#order-of-layout
https://swcregistry.io/docs/SWC-119/#samples

I03. Missing SPDX License Identifier

Trust in smart contracts can be better established if their source
code is available. Since making source code available always touches
on legal problems with regard to copyright, the Solidity compiler
encourages the use of machine-readable SPDX license identifiers.
Every source file should start with a comment indicating its license.

Path: ./contracts/*.sol

Recommendation: Implement SPDX License Identifiers at the beginning
of the aforementioned files.

Found in: f34ba59

Status: Fixed (Revised commit: dab4c9e)

Resolution: The missing SPDX License Identifier has been added to the
aforementioned files.

I04. Missing Initialization Calls To Parent Contracts

The function initialize() does not call the initialize functions of
its parent contracts __Whitelist_init() and __UUPSUpgradeable_init().

Solidity takes care of automatically invoking the constructors of all
ancestors of a contract. However, when working with Upgradeable
contracts it is necessary to manually call the initializers of all
parent contracts.

In this case __Whitelist_init() and __UUPSUpgradeable_init()
initializers contain empty implementation, thus, it has no impact on
processing flow.

Path: ./contracts/SmartCoin.sol: initialize()

Recommendation: Call __Whitelist_init() and __UUPSUpgradeable_init()
in the initialize() function of SmartCoin contract.

Found in: f34ba59

Status: Fixed (Revised commit: dab4c9e)

Resolution: The necessary function calls have been added to
initialize().

I05. State Variables In Upgradeable Contracts Should Be In Initializer

The contract WhitelistUpgradeable sets the state variables registrar,
operations and technical in the constructor. Since those variables
are immutable, they will be kept in the implementation bytecode.

However, when working with upgradeable contracts, it is recommended
to work with initializers instead of constructors, because the

www.hacken.io
14

variables will then be stored in the proxy storage with the rest of
the variables. This will maintain consistency amongst the whole
storage, making it more robust to corner cases, unexpected
interactions or invalid upgrades.

address public immutable registrar;

address public immutable operations;

address public immutable technical;

constructor(address _registrar, address _operations, address _technical) {

registrar = _registrar;

operations = _operations;

technical = _technical;

}

Path: ./contracts/smartCoin/WhitelistUpgradeable.sol: constructor().

Recommendation: It is recommended to initialize the variables
registrar, operations and technical via initializer instead of using
a constructor.

References: OpenZeppelin Upgradeable Contracts FAQs.

Found in: f34ba59

Status: Mitigated (Revised commit: dab4c9e).

Resolution: The recommendation was not followed provided the given
explanation from the client in compliance with OpenZeppelin plugin:

“The main goal for storing the operators in contract's bytecode is to
lower the gas cost, as we perform checks on Operations and Registrar
addresses in every transfer, approve, transferFrom,
increaseAllowance, and decreaseAllowance.

For invalid upgrades, we would not be able to compromise the storage
layout as it is verified by the Openzeppelin plugin
@openzeppelin/hardhat-upgrades, and operators are checked by the
contract itself.”

I06. EngagedAmount Collection Processing Lacks Consistency

The mapping _engagedAmount, which is responsible for storing the
engaged amounts of transactions executed to the operations or
registrar roles, uses the unchecked{} keyword for Gas Optimization in
validateTransfer() and _rejectAmount().

function validateTransfer(bytes32 transferHash) external onlyRegistrar

returns (bool) {

TransferRequest memory _transferRequest = _transfers[transferHash];

www.hacken.io
15

https://docs.openzeppelin.com/upgrades-plugins/1.x/faq#why-cant-i-use-immutable-variables

if (_transferRequest.status == TransferStatus.Undefined) {

revert TransferRequestNotFound();

}

if (_transferRequest.status != TransferStatus.Created) {

revert InvalidTransferRequestStatus();

}

_transfers[transferHash].status = TransferStatus.Validated;

unchecked {

_engagedAmount[_transferRequest.from] -=

_transferRequest.value;

}

_safeTransfer(

_transferRequest.from,

_transferRequest.to,

_transferRequest.value

);

emit TransferValidated(transferHash);

return true;

}

function _initiateTransferRequest(

address _from,

address _to,

uint256 _value

) internal {

unchecked {

_engagedAmount[_from] += _value;

}

bytes32 transferHash = EncodingUtils.encodeRequest(

_from,

_to,

_value,

_requestCounter

);

_transfers[transferHash] = TransferRequest(

_from,

_to,

_value,

www.hacken.io
16

TransferStatus.Created

);

_requestCounter += 1;

emit Transfer(_from, _to, 0);

emit TransferRequested(transferHash, _from, _to, _value);

}

However, the mapping is not wrapped in unchecked{} in
rejectTransfer(). As a result, it creates a code inconsistency:

function rejectTransfer(bytes32 transferHash) external onlyRegistrar

returns (bool) {

TransferRequest memory transferRequest = _transfers[transferHash];

if (transferRequest.status == TransferStatus.Undefined) {

revert TransferRequestNotFound();

}

if (transferRequest.status != TransferStatus.Created) {

revert InvalidTransferRequestStatus();

}

_engagedAmount[transferRequest.from] -= transferRequest.value;

_transfers[transferHash].status = TransferStatus.Rejected;

emit TransferRejected(transferHash);

return true;

}

Path: ./contracts/SmartCoin.sol: rejectTransfer().

Recommendation: Consider using the keyword unchecked{} in
rejectTransfer() for Gas Optimization and consistency along the code.

Found in: f34ba59

Status: Fixed (Revised commit: dab4c9e)

Resolution: unchecked{} was added into rejectTransfer() for
consistency.

www.hacken.io
17

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
18

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, do not affect
security score but can affect code quality score.

www.hacken.io
19

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
20

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://drive.google.com/file/d/1tSRyv3FxujjpSZl6DkhmS9vIKbmuZbrT/view
?usp=sharing

Commit f34ba59

Whitepaper Not provided

Requirements Link

Technical
Requirements README.md

Contracts File: EncodingUtils.sol
SHA3: 1da492afaf87f8fa077a0058c1317f01bf05f2f2e88a646f97fa3535c201063e

File: ISmartCoin.sol
SHA3: fd99d650908914900e3e57b7d96873c5b6cc9e346706bc5b133a6d1e0b95529f

File: IWhitelist.sol
SHA3: 5e71a2aa9aeed3ebb2c7d5235f862c59b09b7dcd40532e87b3a5f0c1fc27f0c2

File: SmartCoin.sol
SHA3: 08ccc0f51edbefbdae0e9d36eb64496c46669d5e74d22ca2b17eeea7d5d28989

File: WhitelistDataLayout.sol
SHA3: 57e4095847575ec6b84d45776669109838f11c0757553503b20cbb4f0eb349cc

File: SmartCoinDataLayout.sol
SHA3: 37ce8cbea18fd3ee62aa8b93911236b37b96f685ae83de8275e35e5dc57ef53d

File: WhitelistUpgradeable.sol
SHA3: ec62ecffd2214a11263efd0c7e525a7ef01c62f40a5b2e9a7dfd6ce4ece91ea1

Second review scope

Repository Zip file

Commit dab4c9e

Whitepaper Whitepaper

Requirements Link

Technical
Requirements README.md

Contracts File: contracts/libraries/EncodingUtils.sol
SHA3: 730be9ee27a42f1803b43ae013e38483c0f5ce2caf7b998caadeacf5fc484066

File: contracts/smartCoin/ISmartCoin.sol

www.hacken.io
21

https://drive.google.com/file/d/1tSRyv3FxujjpSZl6DkhmS9vIKbmuZbrT/view?usp=sharing
https://drive.google.com/file/d/1tSRyv3FxujjpSZl6DkhmS9vIKbmuZbrT/view?usp=sharing
https://www.sgforge.com/product/coinvertible/
https://www.sgforge.com/wp-content/uploads/2023/07/SGF_Coinvertible_White-Paper-v1.0.pdf
https://www.sgforge.com/product/coinvertible/

SHA3: 94d769fde091fd6b05ac87762739627c68e8a4f50817ab2376170afe11081a3b

File: contracts/smartCoin/IWhitelist.sol
SHA3: 5e93023a686c333e5f64385f8f598a23642e21526080f4a3e05373e39b03563f

File: contracts/smartCoin/SmartCoin.sol
SHA3: 88c18e32728d4c903354c22b343906e17aeec45bc2743f5d005af65746c2cc16

File: contracts/smartCoin/SmartCoinDataLayout.sol
SHA3: 0dfc3a8ef4b30dad175fb2413ed7d410cd569a45c4ac181e001c7831ec4beabc

File: contracts/smartCoin/WhitelistDataLayout.sol
SHA3: 7541c176fa0443cb0dcd33ce4c59710d885864d376194db8bf88c0635feeff4e

File: contracts/smartCoin/WhitelistUpgradeable.sol
SHA3: d3f5ac7fb487681ebc3ed03372a8d54f0294ae32c71632c80c9792dfcb31fb58

www.hacken.io
22

